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A UNIFIED THEORY OF PLASTIC BUCKLING OF COLUMNS AND PLATES

By ELBrIDGE Z. STOWELL

SUMMARY

On the basis of modern plasticity considerations, a unified
theory of plastic buckling applicable to both columns and plaies

has been developed. For wuniform compression, the theory.

shows that long columns which bend without appreciable
twisting require the tangent modulus and that long flanges
which twist without appreciable bending reguire the secant
modulus. Structures that both bend and twist when they
buckle require ¢ modulus which 18 a combination of the secant
modulus and the tangent modulus.

INTRODUCTION

The calculation of the ecritical compressive stress of
columns and of structures made up of plates is an important
problem in aircraft design. Formulas for the critical com-
pressive stress have been worked out for 2 multitude of cases
of both columns and plates, but these formulas are accurate
only if the buckling takes place within the elastic range of
the material. In present-day designs, most buckling occurs
above the elastic range. The usual method of handling this
problem is to retain all the formulas derived for the elastic
case, but to try to discover an effective, or reduced, modulus
of elasticity which will give the correct result when inserted
into these formulas.

Column buckling was the first structural problem to be
studied in the plastic range. In the latter part of the nine-
teenth century, Engesser proposed use of the tangent
modulus as the reduced modulus for columns. At almost
the same time, in the belief that the column would be
strengthened by unloading on the convex side, Considére.
suggested that the effective modulus should lie between the
tangent modulus and Young’s modulus. This concept was
subsequently refined by Engesser and by Von Kérmén
(reference 1) and led to what is generally kmown as the
“double modulus.”

Experiments have shown, however ‘that the Von Kérmén
double modulus gives values that are too high for the ecolumn
strength (reference 2) and that the correct modulus is
- probably the tangent modulus. Shanley (reference 3) has
stated the situation compactly as follows: “If the tangent
modulus is used directly in the Euler formule, the resulting
critical load is somewhat lower than that given by the re-
duced modulus theory. This simpler formula, originally
proposed by Engesser, is now widely used by engineers,
since it gives values that agree very well with test data.”
Further careful tests by Shanley (reference 4) and also by
Langley structures research laboratory. have shown that the
unloading on one side of the column, postulated by

Von Kérmén, does not occur at buckling and that the correct
modulus for columns is actually the tangent modulus. This

conclusion also bas theoretlcal justification (references 3 _

and 4).
In the case of local or plate buckling, the reduced modulus

is appreciably higher than the tangent modulus. Tests .

of the local buckling stress of aircraft-section columns have

been made by Gerard (reference 5), who has suggested the

use of the secant modulus for this type of buckling. Exten-
sive tests in the Langley structures research laboratory on
similar ajreraft sections made and reported over a period

of several years and summarized in reference 6 have also

shown that the reduced modulus for plates is in the vicinity
of the secant modulus.
alloy cruciform-section columns, designed to buckle by
tmstmg without appreciable bending, have been made
in a manner similar to that described for the aircraft-section
columns in reference 6. The results have shown that the
reduced modulus for pure twisting is very close to the

secant modulus.
The present paper constltutes a theoretical mvestlgatlon

of the buckling of plates beyond the elastic range, which
includes columns as a limiting case. Such an investigation
requires a knowledge of the relations between the stress
and strain components beyond the elastic range. These
relations have not as yet been conclusively determined.
A recent paper by Handelman and Prager (reference 7)
based on one possible set of stress-strain relations Jed to_.

results for the buckling of hinged flanges in sharp disagree-

ment with test results obtained at the Langley structures
research laboratory. Another set of stress-strain relations
is generally accepted by the Russian investigators and has

. been applied by Ilyushin (reference 8) to the stress conditions

in thin plates. These results form the foundation of the _
present paper, which assumes that in plates as well as in
columns unloading during the early stages of buckling does
not occur. On this basis, a unified theory of plastic buckling
applicable to both column and local buckling has been
developed. The results are presented in the following section.

RESULTS AND CONCLUSIONS
Tyushin (reference 8) has treated the stability of pla.tes

stressed above the elastic limit with consideration of the - -

three possible zones that might result from buckling:

(1) a purely elastic zone, (2) a zone in which part of th_e____l

material is in the elastic and part is in the plastic state—
the ‘“elasto-plastic’” zone, and (8) a purely plastic zone in
which all of the plate is stressed beyond the elastic limit.
All three zones may exist simultaneously if the plate is not
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In particular, tests oflong eluminum-
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entirely in the plastic state before buckling or if the buckling
is allowed to proceed beyond the initial stages.

If, however, the plate is uniformly loaded before buckling
so that all parts of it are initially at the same point in the
plastic range and if, in addition, buckling and increase in
load are assumed to. progress simultaneously, then the plate
may be expected to remain in the purely plastic state in the
early stages of buckling. This second assumption is in
agreement with the corresponding condition that apparently
holds for columns (reference 4).

Upon the assumption that the plate remains in the purely
plastic state during buckling, Ilyushin’s general relations for
this state have been used to derive the differential equation
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of equilibrium of the plate under combined loads. Since
critical stresses are generally simpler to compute from energy
expressions than from a differential equation, the correspond-
ing energy expressions were also found. These derivations
are given‘ in appendix A, together with applications to com-
pressive buckling of various types of plates. A comparison
with Ilyushm’s treatment of the plastm—buckhng problem is
given in appendix B. '

The results of most interest in the present analysis are
given in the following table as values of a quantity %, the
number hy which the critical stress computed for the elastic
case must be multiplied to give the critical stress for the
plastic case.

sk sk G S - —_— i T

Strueture ' . L (sgaué;_e 1
Long flange, one un- -
loaded edé'e gimply EE‘ A
supported LB
Long flange, one un- Ere 1,.3E
loaded edg’e clamped | (O 330+0 67 ;Z'I'Z_E;_l: B

Long plates, both un-
loaded e e‘fes simply

support,
Long plate, both un- | ~ E Yo

loaded edges| . <O352+06481/1 3 “") D

clamped ‘ pa 4 E,.
Short plate loaded asa 1 3 E,

column (% <<1) i +ZT - E
Square plate loaded as E

tan

& column (=1 0.114 Zre 0,886 Zxe F

Long column @ >>1) %5 o G

e ek

These values of 4 are plotted as curves A to G in figure 1 for
extruded 245-T aluminum alloy for which the compressive
yield stress was 46 ksi. Similar curves for 5 could readily
be prepared for any other material having & known stress-
strain relationship.

The values of # given in the table were obtained by
dividing the critical stress of the structure in the plastic
region by the critical stress that would be obtained on the
assumption.of perfect elasticity. Since Poisson’s ratio has
been teken as one-half in both computations, errors.from
this cause will ordinarily be present in both critical stresses.
Most of these errors will be eliminated, however, in the
process of division to obtain 4; and, consequently, the values
of 4 given are believed to be nearly correct.

When plate-buckling stresses in the plastic range are to be
computed, the experimental value of Poisson’s ratio that
applies as closely as possible to the stressed material, to-
gether with the appropriste value of 5 from this paper,
should be used in the plate-buckling formula,

The highest value of  which is EEM can be realized only if

there is negligible longitudinal bending (as with a long hinged
flange which buckles by twisting). The lowest value of g

which is EE“ occurs when the longitudinal bending pre-

dominates over other types of distortion (as with a long
column under Euler buckling). The theory implies that a
change in the stress-strain curve caused by prestressing of the
material would alter the value of # in the first case buf not
in the second,; if the buckling stress is higher than the highest
stress reached during the operation of prestressing. If, on
the other hand, the buckling stress is lower than the highest
stress reached during the operation of prestressing, then g=1
for each case.

LANGLEY MEMORIAL AERONATUTICAL LABORATORY,
Narrowas Apvisory COMMITTEE FOR AERONAUTICS, _
Laineiey Fieip, Va., July 29, 1947.
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FIGURE 1.—Computed corves showing variation of » with stress for varlous structures of 248-T aluminum slloy In compression. (Curves A to G are drawn for & material with a yleld
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APPENDIX A
THEORETICAL DERIVATIONS

Definitions.—The intensities of stress and stram are
defined in reference 8, respectively, as . N

o= ‘V/0'52+°'y2_0'x0'w+372 (1)

where
g, stress in the z-direction

e: strain in the z-direction

oy stress in the y-direction

ey strain in the y-direction

7  shear stress o
v shear strain

According to the fundamental hypothesis of the theory of
plasticity, the intensity of stress o, is & uniquely defined,
single-valued function of the intensity of strain e, for any
given material if o; increases in megnitude (leading con-
dition). If ¢; decreases (unloading condition), the relation
between ¢; and ¢; becomes linear as'in a purely elastic case-

In the equations of definition (1) and (2); the material is
taken to be incompressible and Poisson’s 'ratio=%- The

stress-strain relations compatible. Wlth the equatxons .of
definition (1) and (2) are: . . oo

1
(72" '_'—2- Ty S:

&= Esec _Eae_e:

1
L5 S,
€ Bec -_Eseo (- ’ (3)

These relations imply isotropy of the material.

" Variations of strain and stress.—When buckling occurs,
let ez, €, and v vary slightly from their values before buckling.
The variations &e,, 8¢, and §y will arise partly from the
variations of middle-surface strains and.partly from strains
due to bending; thus,

W

de;= €— 2X1
dey= &— 22X 4)
SY=2¢—22x;
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=% e,2+e,5+e,e,+24 - —ree - (2)

in which ¢ and e are middle-surface strain variations and
e is ‘the middle-surface shear-strain varistion, x: and xa
are the changes in curvature and x, is the change in twist,
and z is the distance out from the middle surface of the plate.

The corresponding variations &S, S, and 47 in S;, .S,,
and r must be computed. From equations (8),

. Sz=Esecé:
therefore .. .

’SS: =Esm65x +eb (Z_-f

5;—; s ®)

=Esecaéz - 0’¢

Now the variation of the work of the internal forces is

cide i =a b6+ o ,de, 1 &y

so that -
- g.8e,ta,0e,1TOY
6_6.‘= (2]
. _omtaet2ra—2(cxitoyxat 2rxs) (6)

gy
Substitution of this value of %e, in equation () gives

5S#=Esec5€:'— .
o“e‘< do't) [a,e;—l— oyeat2res— 2o X1+ oy Xat 270)]

Let the coordinate of the surface for which §e;=0 (t-he neutral .
surface) be z=z,. The expression for z is obtained by set~
ting d¢,=0 in equation (6);

a6+ 061 276 7
esXi+oyXa 21X

By introduction of this coordinate inta the expression for 5S,

and by recognition of g—‘ as E,., and %-‘ as Ein
t 1

88= sec(el_ZIXI) +
e ( ses— Fitan) (G'zXI+ eyXe+27X3) (z_ n"-’o) (8) )

a

In a similar way it may be shown that

ESy;"_E"c(Es—-ZXa) ‘+'
: -&% (Eaeo— Foran) (0200 F o4 Xa+27X3) (2— ) (9)
and
57—' au(es_ZXZ)+
m (Esec_Etan) (esx1Foyxat27X35) (z_ %) (10)
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Variations of forces and moments.—For the variations of the impressed forces 7%, T}, and 7%, and the moments AL,
3f,, and AL,

~

&
2
ST f  bo.d
A
2
5T,=f \ Sodz
A
iy
2
ET,“,=J' §r dz
_A
) . (11

A
r
aM,=_f 0.2 dz
-3

A
2
6A1,=f . do,zdz

o

5L, = f . brz dz

< P

wﬁure k is the thickness of the plate.
From equations (3), (8), and (9),

=2 [* (58,4188, )z dz
3 _k 2 )

‘ ,. . | ,. |
: - 3, ety 3

5| Be(atga)[ tBu(xtg ) [ et B Bud ontosnton) [ (e
T s e AT

=% Ei’éhs (x;-[— x:) +e:+ 2% (1— 'E—) (oex1F0,%+27x3)

R CRY

where

3
pr B
Similarly,

M, =2 f (as+ 6S,)ulz
0 { (13 (2) ()|t (-3 2 (B B ()} )
SM = J:Zﬁrz de

L I NN

In these expressions, the integrations of 8S;, S,, and & in the plastic region have been taken over the entire thickness of the .
plate, with the implication that no part of the plate is being unloaded.
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Equation of equilibrium.—If w (z, y) is the bending deflection, of the plate at buckling, and if no external moments are
applied to the plate, then the equation of equilibrium of an element of the plate may be written

az(aM,)¢2 b’(sM,,)_l_aﬂ(aM,)
oz’ dxdy

h( .3 ,+a,ay,+2fa > (15)

in which the impressed forces o.h, o4k, and 74 are considered as given (a, and ¢, are positive for compression). In terms of
w, the changes in curvatures are . :

L
xl=%§u o R = (16a)
and o - i S S
>? :
=57 (16b)
The change in twist is o L _ o T S Co
ofw o _
Xs—‘aﬁy : (16c)_

When the values of JM,, 8M,, and M., in equations (12), (18), and (14), respectively, are differentiated as required by
equahlon (15) and substituted in that equation, the general differential equation of equilibrium for a plate in the plastic’state
is obtained as follows:

) (BB B S -

Eion _k 2

0',1'(1_ :ec azaya'i'l: 4( ) (1 E; ayc D' 0': o2 +‘7nr g;t;+2f axay (17)

In the elastic range, equation (17) reduces to the usual form
h
V‘w D [ arz_l_ﬂ'y ay2+ ETaxay
where o o _ . .-
Eh“’ _
e _

Energy integrals.—Equation (17) is the Euler equation thet results from a minimization of the integra
D’ *w\? b’w QM My b’w b’w QMW d'w O*w
f j( {01 32) "G am ey TG [( ) Cromy o tO ( }

e[ () 3:2:2;"+ &) D i

which represents the difference between the strain energy in the plate and the work done on the plate by ithe external forces.
The coefficients in this integral are:

In the plastic region ... In the elastic regqion -
01—1_— (0-3) (1 E . 01:1
=3 %] (1-E! ) Ci=0
(73=1 2 .ﬂ—l.;&.z (1_E“'n ’ 03=1
oms%(1Bs) g

0,,_1- )1—E‘“) Ci=1

sec
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If there is a restraint of magnitude ¢ anng one longitudinal edge of the plate, the strain energy in this restraint 1tself is taken

to be . D'J‘ I:(bw) J . . -
Y=y

if 9o is the edge coordinate. (See reference 9 for form of expression.) In expression (19), the stiffness D’ is assumed to be
the same as that in equation (12). If restraints are present along two edges, there will be two terms similar to expression (19).

These terms may be added to integral (18) as additional strain energy.
Critical stress in plastic region.—If the integral (18), supplemented if necessary by additionel terms of the form of ex-
pression (19), is set equal to zero and the resultmg equation solved for o, the critical-stress intensity in the plastic region

(00)p1 18

o {10 25 e (25 2230 o 2ot a G i (G T
TG i e

in which the values of the (s in the plastic range are used. This expression for the critical-stress intensity may be minimized
as with the corresponding elastic case.

If the values of the (’s in the elastic region are used in formula (20), the cr1t1ca1—stress intensity in the elastic region

(09 is as follows: . , . .
p JJLGH) +(e) 55 v @ eari[[G)o] e o

(0)er= ffl: (gg:; o ; gg:aw err@’;")’:ldx dy

Expression for y.—A quantity 5 is defined as

(cn)pz . S o )

~(or)es

This quantity is & direct measure of the effectiveness of plasticity in reducing the criticel stress of a structure, and its com-
putation in terms of the constants of the stress-strain curve represents the solution of the problem of plastic buckling.
Application to plates compressed in the z-direction.—-The theory will now be applied to flat, rectangular plates uni-
formly compressed in the r-direction. Values of 4 will be computed for the following cases:
1. Long plates with one free edge (flanges), the other edge being either hinged or clamped
II. Long plates with both edges either hinged or clamped
ITI. Plates with two free edges (columns)

When o,=7=0, o;=0; and the plasticity coefficients reduce to

1 3 Ein

itiE,.,
03=04=0
Cs=05=1

The differential equation of equilibrium, equation (17), then becomes

d'w w__ho, dw
ot amptop— D o

and the corresponding energy expression (20) for the critical stress in the plastic range becomes _ o
2w\? o*w O*w o%w S € ow
o [J[a(GE) +(omy) +5 5+ G Tt (B ] &
(o.z)”_T . - > . - (24)
JJ(&)eean

- (23) *




134 REPORT NO. 898—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Case I: Elastlcally restrained flange ©on .
If y=0 is the elastically restrained edge of the ﬁange and y-—b is the free edge, a deﬁecllon surface I\nowu to be good in
the elastic range and presumably satisfactory also beyond this range is (reference 9)

=l [0 (0 (e (e

where
ay=—4.963 , _
a,=9.852 e - s
dg= —9.778

and e is the magnitude of the elastic restraint. Substitution of this expression for w in equation (24) gives

-;~+§(c2—§cs)+ff[ Lot —fi % )J+(I‘"E C*‘)(””)c&—(—s

o= LA
w9} 1'l2 _+ Cge
2a3 4.@3

where

¢,=0.23694 . . o . 6=0.04286 - ¢;=0.19736

€,=0.79546 es=0.56712 - cy=—2.3168

¢;=0.89395 _ e €=0.17564 c=4.0982
In order to find the minimum value of (e.},,

bfa',. ~t

T
which gives

- _l_c;e
| &)- 68
| __ (6+ + )a

The minimum value of {os) g1 18 therefore

2 a+i(a—ga)t 4( C7)+2\/01\/ £1+°'“)(6+“‘€+°‘*2) LD
- P, _W_— N

(0':)91'—_‘_
d+203 II_ o

T’

For the elastic case, the same expression is obtained from equation (21) with =1 and D’ replaced by D. From equation (22),

therefore,
o 2 2(02 2 c"‘)_’_ 4(64'_‘ 07)-1-2\ ¢y \/ (1 +c5e)(6+clé+c4e

— 25)
N = (
"|’ C2— 2 03)+ 7] Cs— 07)‘[‘2-\/ (1 Gﬁe)(6+cle+c4€
= f 2
(a) If the edge y=01is hinged, e=0 and, from equat.lon ( 5) S (c&__ q) +oyT \/6465
. EI\N‘ ______ . ' = n= -—l‘é?_u - .-
=g e (26) _ 4(06 1 )+2 Vs e B
This value, as a function of stress, is plotted as curve A for | or ' . L
24S5-T aluminum alloy in figure 1. The individual points _ E, —"T: L
represent the NACA ftests of the buckling of cruciform- . T ’7=_E'e_c 0.330+0.6704 /713 pi“) 27) .
section columnus for which the condition e=0 is fulfilled. -
(b) If the edge y=0 is clamped, e= and, from equa- | This value of 7 is plotted as curve B for 245-T aluminum
tion (25), alloy in figure 1.



A UNIFIED THEORY OF PLASTIC BUCELING OF COLUMNS AND PLATES

Case II: Flate elastically restrained along two unloaded edges

If y=i% are the immovable unloaded edges which are

elastically restrained against rotation by restraints of magni-
tude ¢, a satisfactory deflection surface is known to be
(reference 10}

w=|:g %; 4)-1 (1—[—2) cos J:Icos—

Substitution of this expression for w in equation (24) gives

@ G (3) +20 (3) +£0 | 57

where
0.0237¢+0.207e+ 5
fild= 3
0.004614 0.0947¢+5
and
(=014 40,1804 41

0-00461e‘*’+0.0947e+,1,

In order to find the minimum value of (s2),:

a(a':)pl

o(x)
(-

The minimum value of (s2),,

»=0

which gives
/ f 1 (5)

18 therefore

(o), =[2VOFE +f2(d] 5 W

For the elastic case, the same expression is obtained from
equation (21) with C;=1 and D’ replaced by D. From
equation (22), therefore,

Esee 2+ 01 \/f 1(e) +fa(e)
2719 +2(e)

(28)

(2) If the edges y—i% are hinged, e=0

and, from equation (28},

-E:!ec

=Esec 1+ \[U;

E 32 (29)

3E.
(2+2\ itIE c)
This value of 3 is plotted as curve C for 24S-T aluminum
alloy in figure 1.
(b) If the edgeﬁ y—:lzg are cIamped e=o, fi(e)=5.15,
f2(e)=2.46, and, from equation (28),

_ . 2.46+4.52C

”‘_E' 6.98

(0 353+0. 641-\/—+4 E."'“ (30)

This value of 7 is plotted as curve D for 245-T aluminum
alloy in figure 1.

Ji (6)—1 file=2,
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Case III: Plastic buckling of columns

For the discussion of the plastic buckling of columns, it is
convenient to revert to the differential equation (23). The
plate, when loaded as a column, has two free edges descnbed
by the conditions

ow | 1w _
(by’+2 z? b—O
T=t5 -
w3 d'w —o '
YT 22}::2031

A solution of equation (23) which identically satisfies the first
condition is

w=<g coS g cosh-gb—y-{—p cosh %‘ cos Eb—y) cos 3;5

a=1r—\[%- \/%+--\/ e+(3) a—c

~Le\e+(3) a-a

where

pmry/ o

=D’
b*h

1 /xb\?
p=c—3(T

g= ﬁ*+é (fl—b)

1 3 Etm
4 El ac

(a’,),,;=k

Ci=

In order that this solution also satisfy the second condition
at the free edges, it is required that

e [p ( ) :I tanh

which is the buckling criterion for the plate when loaded as
a column. Let

k+(3) a-a=(7) a-o

where £ is a quantity to be determined for three mdu’ldual
cases. By use of equation (32)

a’-——-("—b)'(lhfi:?)

e=(F) (—1++7=8)

)

(3 (e
p—q=<’r7[f)!

2 +g%p l: +<1rb‘ ] tar; —=0. (31) |

(32) o
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and the buckling criterion given in equation (31) becomes

tanh% tang
2 L 02,2

&
2 2

or
o

[e+(5-¢) G+ Jlf‘ez)] i 18
3

Q
2

[e+(3-#) G-vi-p sﬁ)]

(33)

I

2
From equation (32), k=(§—’) (Ci—#); and thus the critical

stress in the plastic range is

(a_ )pl_ﬂ' E‘sec(ol 2 - o
i 3 l)”
4\p
b

where

The corresponding critical stress in the elastic range is

= E(1— é)
3(1
4\p

(0z)ar=

The reduction factor 4 is obtained from formula (22) as
(Z_Eg) nec 3 Etln

(2) In order to investigate the case of short columns, let
£ approach zero. Then, by definition of g,

—0
and
tan 8
2 1
B _
2
In addition,

#+(3-¢) (1-1=2) o0

The buckling criterion given in equation (33) therefore

reduces to

[f“r(--f’)(lwl fﬂ)]

tanh

o

The expression in the brackets apprdaches%asf—a(}. In

order to satisfy the buckling criterion, therefore,

’ ta,nhg
—30

2

2

which cen_be realized only if « is large; that is, if 4/ is large.
For short columns, therefore,

£=~0
and, from equation (34),

1 Eseo
n= 4 E-'l_

This value of 4 is plotted as curve B for 24S5-T aluminum
alloy in figure 1.

(b) Fora square plate, ? 7=1, a=my1+ 1B,
B=‘i1r-\/ 1—+/1—£, and the buckling criterion glv_en in

equation (33) becomes-
tanh (5VI+VI— £
e (1) (14-47=0)] _S_H_TE ).

[z*+ 1) (1-41= 2)] tanh <_\/:ﬁ) _

0.15375.

3E;,m e

which is gatisfied by £#= From equation (34),

Etn.n

7=0.114 ﬁ+o.886 - (36)

This value of 5 is plotted as curve F for 24S-T aluminum

-alloy in figure 1.

(¢) For long columns, « and 8 become so small that

8

[4 4
tanh 3 tan 5

78
2

=]
.2
2

and the buckling criterion of equation (33) reduces to

o 1=6) 728 [+ (o)) o

which is satisfied by E”-—-Z- From equation (34),

Ean - T
_— - e
This value of n agrees with the experimental results of
references 2 and 4 and is plotted as curve G for 24S-T
aluminum alloy in figure 1.



APPENDIX B
COMPARISON WITH ILYUSHIN’S STABILITY CALCULATIONS

The basic difference between Ilyushin’s solution of the
plastic-buckling problem and that given in this paper is that
Ilyushin considers the plate to unload on one face as it
buckles. The unloading process results in the creation of
an elastic-plastic zone in the plate, and different equations
from those that apply when the plate remains plastic during
the buckling process are required for this zone.

The differential equation for the buckling of a rectangular
plate when buckling is accompanied by unloading is given
by Ilyushm as equation (3.43) of reference 8. For simple
compression in the z-direction this equation is of the same
form as equation (23) of the present paper, but with the
following different constants: D is used instead of D’ and

k=1—-2(3—2p)

is used instead of g‘“- In the formula for k, from equa-
BeC

tion (3.1) of reference 8,

1I—y1—2
==
and, from equeation (1.22) of reference 8,
N
When the values of ¢ and N are inserted into the expression
for k
{E 2
tan
k=€"“‘3 2 1_\ E
E " E
I=F

Computation shows that k is always larger than g}“; 80
. se¢

tan

that the use of k in place of g

will result in appreciably
higher values of # than those given in the present paper.

Sinee Tlyushin uses the elastic value D, there is no possibility

of the solution yielding a secant modulus. Curves A to G

in figure 1, if computed from Ilyushin’s equation (3.43),
would stert with a horizontal line at unity for curve A

(Young’s modulus) and end with curve G expressing the

Kérmén double modulus which is appreciably higher than
the tangenb modulus of this paper. If D’ were substituted
for D in Ilyushin’s equation (3.43), curve A would then
represent the secant modulus as it does in the present paper,
but curve G would still remain the Kdrmdn double modulus.
Therefore, when the unloading of the plate during the
buckling process is considered, results are obtained which
are not confirmed by experiment.
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